

ESCOPO DA ACREDITAÇÃO – ABNT NBR ISO/IEC 17025 – ENSAIO

Norma de Origem: NIT-DICLA-016	Folha: 1	Total de Folhas: 4

RAZÃO SOCIAL/DESIGNAÇÃO DO LABORATÓRIO

ATTEND AMBIENTAL S.A ATTEND AMBIENTAL

ACREDITAÇÃO N°	TIPO DE INSTALAÇÃO		
CRL 1447	INSTALAÇÃO PERMANENTE		
ÁREA DE ATIVIDADE A PRODUTO	CLASSE DE ENSAIO / DESCRIÇÃO DO ENSAIO	NORMA E /OU PROCEDIMENTO	
MEIO AMBIENTE	ENSAIOS QUÍMICOS		
ÁGUA RESIDUAL	Determinação de Sólidos Sedimentáveis pelo Método Volumétrico	IT-LB-004	
	LQ: 5,0 mL/L		
	Determinação de Óleos e Graxas pelo Método de Soxhlet	IT-LB-005	
	LQ: 24,0 mg/L		
	Determinação de Fluoreto pelo Método de Íon Seletivo LQ: 0,5 mg/L	IT-LB-007	
	Determinação de Sulfeto pelo Método de Íon Seletivo	IT-LB-009	
	LQ: 0,10 mg/L		
	Determinação de Sulfato pelo Método Turbidimétrico LQ: 15,0 mg/L	IT-LB-008	
	Determinação de Sulfato pelo Método Turbidimétrico	IT-LB-052	
	LQ: 20,0mg/L		
	Determinação de Cromo Hexavalente pelo Método Colorimétrico	IT-LB-010	
	LQ: 0,05 mg/L		
	Determinação de Ferro Dissolvido pelo Método da Fenantrolina - Colorimétrico	IT-LB-011	
	LQ: 0,09 mg/L		
	Determinação de Fenol pelo Método Colorimétrico	IT-LB-014	
	LQ: 0,5 mg/L		
	Determinação de Cianeto pelo Método Colorimétrico	IT-LB-006	
	LQ: 0,1 mg/L		
	Determinação de Cianeto pelo Método Colorimétrico	IT-LB-051	
	LQ: 0,06 mg/L		
	Determinação de Demanda Química de Oxigênio (DQO) pelo Método de Refluxo Fechado - Colorimétrico	IT-LB-012	

"Este Escopo cancela e substitui a revisão emitida anteriormente"		
	Em, 06/02/2023	

ESCOPO DA ACREDITAÇÃO - ABNT NBR ISO/IEC 17025 - ENSAIO

Norma de Origem: NIT-DICLA-016 Folha: 2

	ACREDITAÇÃO N°	TIPO DE INSTALAÇÃO		
LQ: 16,5 mg/L MEIO AMBIENTE ENSAIOS QUÍMICOS AGUA RESIDUAL Determinação de Metais pelo método de Espectrofotometria de Absorção Atômica Arsênio LQ: 0,050 mg/L. Cádmio LQ: 0,100 mg/L. Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.	CRL 1447	INSTALAÇÃO PERMANENTE		
LQ: 16,5 mg/L MEIO AMBIENTE ÉNSAIOS QUÍMICOS Determinação de Metais pelo método de Espectrofotometria de Absorção Atômica Arsênio LQ: 0,050 mg/L. Cádmio LQ: 0,100 mg/L. Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		CLASSE DE ENSAIO / DESCRIÇÃO DO ENSAIO	NORMA E /OU PROCEDIMENTO	
AGUA RESIDUAL Determinação de Metais pelo método de Espectrofotometria de Absorção Atômica Arsênio LQ: 0,050 mg/L. Cádmio LQ: 0,100 mg/L. Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		LQ: 16,5 mg/L		
Espectrofotometria de Absorção Atômica Arsênio LQ: 0,050 mg/L. Cádmio LQ: 0,100 mg/L. Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.	MEIO AMBIENTE	ENSAIOS QUÍMICOS		
Cádmio LQ: 0,100 mg/L. Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.	ÁGUA RESIDUAL	Determinação de Metais pelo método de Espectrofotometria de Absorção Atômica	IT-LB-015	
Chumbo LQ: 0,500 mg/L. Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Arsênio LQ: 0,050 mg/L.		
Cobre LQ: 0,050 mg/L. Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Cádmio LQ: 0,100 mg/L.		
Cromo LQ: 0,100 mg/L. Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Chumbo LQ: 0,500 mg/L.		
Estanho LQ: 2,000 mg/L. Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Cobre LQ: 0,050 mg/L.		
Mercúrio LQ: 0,050 mg/L. Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Cromo LQ: 0,100 mg/L.		
Níquel LQ: 0,100 mg/L. Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Estanho LQ: 2,000 mg/L.		
Prata LQ: 0,500 mg/L. Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Mercúrio LQ: 0,050 mg/L.		
Selênio LQ: 0,025 mg/L. Zinco LQ: 0,100 mg/L.		Níquel LQ: 0,100 mg/L.		
Zinco LQ: 0,100 mg/L.		Prata LQ: 0,500 mg/L.		
		Selênio LQ: 0,025 mg/L.		
XXXXX XXXXXX XXXXX		Zinco LQ: 0,100 mg/L.		
	XXXXX	XXXXXXX	XXXXX	

ESCOPO DA ACREDITAÇÃO - ABNT NBR ISO/IEC 17025 - ENSAIO

Norma de Origem: NIT-DICLA-016 Folha: 3

ESCOPO DA ACREDITAÇÃO - ABNT NBR ISO/IEC 17025 - ENSAIO

Norma de Origem: NIT-DICLA-016 Folha: 4

ACREDITAÇÃO N°	TIPO DE INSTALAÇÃO			
CRL 1447	INSTALAÇÃO DE CLIEN	INSTALAÇÃO DE CLIENTE		
ÁREA DE ATIVIDADE / PRODUTO	CLASSE DE ENSAIO / DESCRIÇÃO DO ENSAIO	NORMA E /OU PROCEDIMENTO		
MEIO AMBIENTE	ENSAIOS QUÍMICOS			
ÁGUA RESIDUAL	Determinação de pH pelo método Eletrométrico	IT-LB-002		
	Faixa: 1 até 14			
	Determinação de Temperatura	IT-LB-001		
	Faixa: 10 °C até 40 °C			
MEIO AMBIENTE	AMOSTRAGEM			
ÁGUA RESIDUAL	Amostragem superficial em tanques subterrâneos e aéreos, caminhões tanque, container, tambores e Estações de Tratamento.	IT-LB-018		
XXXXX	XXXXXXX	XXXXX		